E-ISSN 2578-7322
 

Mini Review 


Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes

Paul C Chikezie.

Abstract
Five species of intracellular protozoa of the genus Plasmodium cause malaria in human. The present review briefly highlighted the critical roles of thiol-mediated antioxidant detoxification systems in the pathophysiology of Plasmodium falciparum-infected erythrocytes that are required for the survival of the malarial parasite in hyperoxidative intracellular environment. Scientific search engines such as PubMed, Pubget, Medline, EMBASE, Google Scholar, ScienceDirect and SpringerLink were used to retrieve online publications from 1976 to 2015. Haemoglobin molecules that are taken up by the parasites’ acid food vacuoles lead to the spontaneous oxidation of haem iron from Fe2+ to Fe3+, formation of superoxide radicals (O2•âˆ’), and subsequently, hydrogen peroxide (H2O2) and hydroxyl radicals (•âˆ’OH), which are highly reactive and cytotoxic oxygen intermediates. Additionally, toxic haem (ferri/ferroprotoporhyrin IX (FPIX) that is released upon haemoglobin digestion is biomineralized to form inert haemozoin. P. falciparum reduced glutathione (PfGSH) is a cofactor for glutathione enzyme systems and mediates in direct reductive detoxification of the toxic byproduct of haemoglobin digestion-FPIX. The postulated role of P. falciparum glutathione S-transferase (PfGST) in the development of drug resistance in malarial parasites is still being controversially discussed. However, selective inhibition of PfGST and P. falciparum thioredoxin reductase (PfTrxR) identifies novel drug targets and potential chemotherapeutic strategy to combating malaria.

Key words: Erythrocyte; ferri/ferroprotoporhyrin IX; glutathione; thioredoxin; Plasmodium falciparum


 
ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Paul C Chikezie
on Google
on Google Scholar
Article Statistics
 Viewed: 859
Downloaded: 268
Cited: 0

REFERENCES
1. Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, et al. Demonstration of hypozoites in sporozoite transmitted Plasmodium vivax infection. Am J Trop Med Hyg 1982; 31:1291-93.
2. Joseph V, Varma M, Vidhyasagar S, Mathew A. Comparison of the clinical profile and complications of mixed malarial infections of Plasmodium falciparum and Plasmodium vivax versus Plasmodium falciparum mono-infection. Sultan Qaboos Univ Med J 2011; 11:377-82.
3. Figtree M, Lee R, Bain L, Kennedy T, Mackertich S, Urban M, et al. Plasmodium knowlesi in Human, Indonesian Borneo. CDCP 2010; 16:6 pages.
4. Lee CE, Adeeba K, Freigang G. Human Plasmodium Knowlesi infections in Klang Valley, Peninsula Malaysia: A case series. Med J Malays 2010; 65:63-5.
5. Marchand RP, Culleton R, Maeno Y, Quang NT, Nakazawa S. Coinfections of Plasmodium knowlesi, P. falciparum, and P. vivax among humans and Anopheles dirus mosquitoes, Southern Vietnam. CDCP 2011; 17:12 Pages.
6. Bansal D, Bhatti HS, Sehgal R. Role of cholesterol in parasitic infections. Lipid Health Dis 2005; 4:10 [DOI via Crossref]    [DOI via Crossref]   
7. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434:214-7. [DOI via Crossref]    [PMC Free Fulltext]   
8. Kochar DK, Singh P, Agarwal P, Kochar SK, Pokharna R, Sareen PK. Malarial hepatitis. J Assoc Physicians India 2003; 51:1069-72.
9. Adekunle AS, Adekunle OC, Egbewale BE. Serum status of selected biochemical parameters in malaria: An animal model. Biomed Res 2007; 18:109-13.
10. Onyesom I, Ekeanyanwu RC, Achuka N. Correlation between moderate Plasmodium falciparum malarial parasitaemia and antioxidant vitamins in serum of infected children in South Eastern Nigeria. Afr J Biochem Res 2010; 4:261-4.
11. Garba IH, Ubom GA. Total serum lactate dehydrogenase activity in acute Plasmodium falciparum malaria infection. Singapore Med. J 2005; 46:632-4.
12. Ali MSM, Kadaru AGM. In vitro processing of donor blood with sulphadoxine/pyrimethamine for eradication of transfusion induced malaria. Am J Trop Med Hyg 2005; 73:1119-23.
13. Tracy JW, Webster LT. Drugs used in the chemotherapy of protozoan infections. In: Goodman and GilmanÂ’s Pharmacological Basis of Therapeutics. Adam JG, Limbird LE, Gilman AG. (Eds). 10th Edition, McGraw-Hill, U.S.A. 2001.
14. www.parasitesinhumans.org/plasmodium-falciparum-malaria.html [retrieved on 1st August, 2015].
15. Smith JD, Craig AG. The surface of the Plasmodium falciparum infected erythrocyte. Curr Issues Mol Biol 1995; 7:81-94.
16. Cholera R, Brittain N, Gillrie M, Lopera-Mesa T, Diakita S, Arie T. Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle haemoglobin. Soc Trop Med Hyg 2007; 98:302-10.
17. Roberts DJ, Williams TN. Haemoglobinopathies and resistance to malaria. Redox Rep 2003; 8:304-10. [DOI via Crossref]    [Pubmed]   
18. Taylor SM, Cerami C, Fairhurst RM. Hemoglobinopathies: Slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog. 2013; 9:e1003327.
19. Muller S. Role and regulation of glutathione metabolism in Plasmodium falciparum. Mol 2015; 20:10511-34. [DOI via Crossref]    [Pubmed]   
20. Liu S, Zhang P, Ji X, Johnson WW, Gilliland GL, Armstrong RN. Contribution of tyrosine to the catalytic mechanism of isoenzyme of glutathione S-transferase. J Biol Chem 1992; 267:4296-9.
21. Lew VL, Tiffert T, Ginsburg H. Excess haemoglobin digestion and osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 2003; 101:4189-94. [DOI via Crossref]    [Pubmed]   
22. Goldberg DE. Haemoglobin degradation in Plasmodium-infected red blood cells. Semin Cell Biol 1993; 4:355-61. [DOI via Crossref]    [Pubmed]   
23. Roth EF, Brotman DS, Vanderberg JP, Schulman S. Material pigment-dependent error in the estimation of haemoglobin content in Plasmodium falciparum-infected red cell: implications for metabolic and biochemical studies of the erythrocytic phases of malaria. Am J Trop Med Hyg 1986; 35:906-11.
24. Goldberg DE. Haemoglobin degradation. Curr Top Microbiol Immunol 2005; 295:275-91.
25. Lanzer M, Rohrbach P. Subcellular pH and Ca2+ in Plasmodium falciparum: Implications for understanding drug resistance mechanisms. Curr Sci 2007; 92:1561-70.
26. Bozdech Z, Ginsburg H. Antioxidant defense in Plasmodium falciparum-data mining of the transcriptome. Malaria J 2004; 3:23. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
27. Liochev SI, Fridovich I. Superoxide and iron: partners in crime. IUBMB Life 1999; 48:157-61. [DOI via Crossref]    [Pubmed]   
28. Sigala PA, Goldberg DE. The peculiarities and paradoxes of Plasmodium heme metabolism. Annu Rev Microbiol 2014; 68:259-78. [DOI via Crossref]    [Pubmed]   
29. Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S. Fate of haem iron in the malaria parasite. Plasmodium falciparum. Biochem. J 2002; 365:343-7.
30. Loria P, Muller S, Foley M, Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J 1999; 339:363-70. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
31. Zhang J, Krugliak M, Ginburg H. The fate of ferriprotoporphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 1999; 99:129-41. [DOI via Crossref]   
32. Atamna H, Ginburg H. Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 1993; 61:231-41. [DOI via Crossref]   
33. Tilley L, Loria P, Floey M. Chloroquine and other quinoline antimalarials. In: Antimalarial Chemotherapy. Rosenthal PJ. (Ed). Totowa, NJ. Humana Press. 2001; pp 87-122.
34. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite infected erythrocytes: host - parasite interactions. Int J Parasitol 2004; 34:163-89. [DOI via Crossref]    [Pubmed]   
35. Jortzik E, Becker K. Thioredoxin and glutathione systems in Plasmodium falciparum. Int J Med Microbiol 2012; 302:187-94. [DOI via Crossref]    [Pubmed]   
36. Puppo A, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron: Is haemoglobin a biological Fenton reagent? Biochem J 1988; 249:185-90.
37. Muller S, Lieban E, Walter RD, Krauth-Siegel RL. Thiol-based radox mechanism of protozoan parasites. Trends Parasitol 2003; 19:320-8. [DOI via Crossref]   
38. Muller S. Redox and antioxidant systems of the malaria parasite: Plasmodium falciparum. Mol Microb 2004; 53:1291-305. [DOI via Crossref]    [Pubmed]   
39. Hunt NH, Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells 1990; 16:499-526.
40. Simoes AP, Van den Berg JJ, Roelofsen B, Op den Kamp JA. Lipid peroxidation in Plasmodium falciparum-parasitized human erythrocytes. Arch Biochem Biophys 1992; 298:651-2. [DOI via Crossref]   
41. Sibmooh N, Yamanont P, Krudsood S, Leowattana W, Brittenham G, Looareesuwan S, et al. Increased fluidity and oxidation of malarial lipoproteins: relation with severity and induction of endothelial expression of adhesion molecules. Lipid Health Dis 2004; 3:15 [DOI via Crossref]    [DOI via Crossref]   
42. Pradines B, Ramiandrasoa F, Fusai T, Hammadi A, Henry M, et al. Generation of free radicals and enhancement of hemin-induced membrane damage by a catechol iron chelator in Plasmodium falciparum. J Biol Sci 2005; 5:463-71. [DOI via Crossref]   
43. Idonije OB, Festus O, Okhiai O, Akpamu U. Comparative study of the status of a biomarker of lipid peroxidation (malondialdehyde) in patients with Plasmodium falciparum and Plasmodium vivax malaria infection. Asian J Biol Sci 2011; 4:506-13. [DOI via Crossref]   
44. Gruarin P, Primo L, Ferrandi C, Bussolino F, Tandon NN, Arese P, et al. Cytoadherence of Plasmodium falciparum-infected erythrocytes is mediated by a redox-dependent conformational fraction of CD36. J Immunol 2001; 167:6510-7. [DOI via Crossref]    [Pubmed]   
45. Fritsche G, Larcher C, Schennach H. Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection. J Infect Dis 2001; 183:1388-94. [DOI via Crossref]    [Pubmed]   
46. Destro Biso LG. Genetic resistance to malaria, oxidative stress and haemoglobin oxidation. Parassitol 1999; 41:203-4.
47. Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F. Growth of Plasmodium falciparum induces stage-dependent hemichrome formation oxidative aggregation of band 3, membrane disposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br J Haematol 2001; 113:492-9. [DOI via Crossref]    [Pubmed]   
48. Williams TN, Weatherall DJ, Newbold CI. The membrane characteristics of Plasmodium falciparum-infected and -uninfected heterozygote alpha (o) thalassemic erythrocytes. Br J Haematol 2002; 118:663-70. [DOI via Crossref]    [Pubmed]   
49. Omodeo-Sale F, Motti A, Basilico N, Parapini S, Olliaro P, Taramelli D. Accelerated senescence of human erythrocyte cultured with Plasmodium falciparum. Blood 2003; 102:705-11. [DOI via Crossref]    [Pubmed]   
50. Parker PD, Tilley L, Klonis N. Plasmodium falciparum induces reorganization of host membrane proteins during intraerythrocytic growth. Blood 2004; 103:2404-6. [DOI via Crossref]    [Pubmed]   
51. Shalev O, Repka T, Goldfarb A, Grinberg L, Abrahamov A, Olievieri NF. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalasaemic and sickle red blood cells both in vitro and in vivo. Blood 1995; 86:2008-13.
52. Beppu M, Ando K, Kikugawa K. Poly-N-acetyllactosaminyl saccharide chains of band 3 as determinants for anti-band 3 auto antibody binding to senescent and oxidized erythrocytes. Cell Mol Biol 1996; 42:1007-24.
53. Asian M, Thornley-Brown D, Freeman BA. Reactive species in sickle cell disease. Ann NY Acad Sci 2000; 899:375-91.
54. Chan TK. Glucose-6-phosphate dehydrogenase (G6PD) deficiency: A review. HK J Paediatr (New Series) 1996; 1:23-30.
55. Fibach E, Rachmilewitz E. The role of oxidative stress in hemolytic anemia. Curr Mol Med 2008; 8:609-19. [DOI via Crossref]    [Pubmed]   
56. Eaton JW, Eckman JR, Berger E, Jacob HS. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 1976; 264:758-60. [DOI via Crossref]    [Pubmed]   
57. Friedman MJ. Erythrocytic mechanism of sickle cell resistance to malaria. Proc Matt Acad Sci USA 1978; 75:1994. [DOI via Crossref]   
58. Cappadoro M, Giribaldi G, OÂ’ Brien E, Turini E, Mannu F, Ulliers D. Early phagocytosis of glucose-6-phosphate dehydrogenase dependent erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 1998; 92:2527-34.
59. Chikezie PC, Chikezie CM, Uwakwe AA, Monago CC. Investigation on methaemoglobin concentration of three human erythrocyte genotypes infected with Plasmodium falciparum. J Appl Sci Environ Manag 2009; 13:5-8.
60. Chikezie PC. Comparative methaemoglobin concentrations of three erythrocyte genotypes (HbAA, HbAS and HbSS) of male participants administered with five antimalarial drugs. Afr J Biochem Res 2009; 3:266-71.
61. Griffiths MJ, Ndungu F, Baird KL, Muller DPR, Marsh K, Newton CRJC, et al. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 2001; 113:486-91. [DOI via Crossref]    [Pubmed]   
62. Boumis G, Giardina G, Angelucci F, Bellelli A, Brunori M, Dimastrogiovanni D, et al. Crystal structure of Plasmodium falciparum thioredoxin reductase, a validated drug target. Biochem Biophys Res Commun 2012; 425:806-11. [DOI via Crossref]    [Pubmed]   
63. Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K. Compartmentation of redox metabolism in malaria parasites. PLoS Pathog 2011; 6:e1001242.
64. Lisewski AM. Plasmodium spp. membrane glutathione S-transferases: Detoxification units and drug targets. Microb Cell 2014; 1:387-9. [DOI via Crossref]   
65. Vega-Rodriguez J, Franke-Fayard B, Dinglasan RR, Janse CJ, Pastrana-Mena R, Waters AP, et al. The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLoS Pathog 2009; 5:e1000302.
66. Lüersen K, Walter RD, Muller S. Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem J 2000; 346:545-52. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
67. Kasozi D, Mohring F, Rahlfs S, Meyer AJ, Becker K. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum. PLoS Pathog 2013; 9:e1003782.
68. Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparumglutathione reduction revisited. J Biol Chem 2000; 275:40180-6. [DOI via Crossref]    [Pubmed]   
69. Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K. Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 2006; 8:1227-39. [DOI via Crossref]    [Pubmed]   
70. Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J, et al. The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci USA 2009; 106:13323-8. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
71. Müller S, Gilberger TW, Krnajski Z, Lüersen K, Meierjohann S, Walter RD. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum. Protoplasma 2001; 217:43-9. [DOI via Crossref]    [Pubmed]   
72. Tripathi T, Rahlfs S, Becker K, Bhakuni V. Glutathione mediated regulation of oligomeric structure and functional activity of Plasmodium falciparum glutathione S-transferase. BMC Struct Biol 2007; 7:67, 10 pages.
73. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999; 27:916-21. [DOI via Crossref]   
74. Frey PA. Radicals in enzymatic reactions. Curr Opin Chem Biol 1997; 1:347-56. [DOI via Crossref]   
75. Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J. et al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumor patients. Oncol Lett 2012; 4:1247-53.
76. Patzewitz EM, Wong EH, Muller S. Dissecting the role of glutathione biosynthesis in Plasmodium falciparum. Mol Microbiol 2012; 83:304-18. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
77. Oude ERP, Ottenhoff R, Liefting WG, Schoemaker B, Groen AK, Jansen PL ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes. Am J Physiol 1990; 258:G699-G706.
78. Homolya L, Varadi A, Sarkadi B. Multidrug resistance- associated proteins: export pumps for conjugated with glutathione, glucuronate or sulfate. Biofactors 2003; 16:499-526. [DOI via Crossref]   
79. Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 1999; 27:922-35. [DOI via Crossref]   
80. Urscher M, Alisch R, Deponte M. The glyoxalase system of malaria parasites-Implications for cell biology and general glyoxalase research. Semin Cell Dev Biol 2011; 22:262-70. [DOI via Crossref]    [Pubmed]   
81. Dubios VL, Platel DF, Pauly G, Tribouley-Duret J. Plasmodium berghei: Implication of intracellular glutathione and its related enzyme in chloroquine Resistance in vivo. Exp Parasitol 1995; 81:117-24. [DOI via Crossref]   
82. Atamna H, Ginsburg H. Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J Biol Chem 1995; 270:24876-83. [DOI via Crossref]    [Pubmed]   
83. Liebau E, Bergmann B, Campbell AM, Teesdale-Spittle P, Brophy PM, Luersen K, et al. The glutathione S-transferase from Plasmodium falciparum. Mol Biochem Parasitol 2002; 124:85-90. [DOI via Crossref]   
84. Deharo E, Barkan D, Krugliak M, Gokenser J, Ginsburg H. Potentiation of the antimalarial action of chloroquine in rodent malaria by drugs known to reduce cellular glutathione levels. Biochem Pharmacol 2003; 66:809-17. [DOI via Crossref]   
85. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine: focus on recent developments. Clin Pharmacokinet 1996; 31:257-74. [DOI via Crossref]    [Pubmed]   
86. Choi CY, Cerda JF, Chu HA, Babcock GT, Marletta MA. Spectroscopic characterization of the hem-binding sites in Plasmodium falciparum histidine-rich protein 2. Biochem 1999; 38:16916-24. [DOI via Crossref]   
87. Masayuki H, Keichi Y, Hiroyuki O, Ryiochi K. Synthesis and properties of Aib-containing of histidine-rich proteins 2 from Plasmodium falciparum. Nippon Kagakki Koen Yokoshu 2006; 86:881.
88. Campanale N, Nickel C, Daubenberger CA, Wewan DA, Gorman JJ, Klonis N. Identification and characterization of heme- interacting proteins in the malaria parasite, Plasmodium falciparum. J Biol Chem 2003; 278:27354-61. [DOI via Crossref]    [Pubmed]   
89. Harwaldt P, Rahlfs S, Becker K. Glutathione S-transferase of the malaria parasite Plasmodium falciparum characterization of a potential drug target. Biol Chem 2002; 383:821-30. [DOI via Crossref]    [Pubmed]   
90. Fritz-Wolf K, Becker A, Rahlfs S, Harwaldt P, Schirmer RH, Kabsch W, et al. X-ray structure of glutathione S-transferase from the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA 2003; 100:13821-6. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
91. Machima R, Tilley L, Simos MA, Papalexis V, Raftery MJ, Stocker R. Plasmodium falciparum histidine- rich protein 2 (PfHRP2) modulates the redox activity of ferriprotoporphyrin IX (FePPIX): peroxidase like activity of the PfHRP2-FePPIX complex. J Biol Chem 2002; 277:14514-20.
92. Deponte M, Becker K. Glutathione S transferase from malarial parasites- structural and functional aspects. Methods Enzymol 2005; 401:240-52. [DOI via Crossref]   
93. Perbandt M, Bumeister C, Walter RD, Betzel, C, Liebau E. Native and inhibited structure of a Mu class-related glutathione S-transferase from Plasmodium falciparum. J Biol Chem 2004; 279:1336-42. [DOI via Crossref]    [Pubmed]   
94. Mangoyi R, Hayeshi R, Ngadjui B, Ngandeu F, Bezabih M, Berhanu A, et al. Glutathione S-transferase from Plasmodium falciparum- interaction with malagashanine and selected plant natural products. J Enzyme Inhib Med Chem 2010; 25:854-62. [DOI via Crossref]    [Pubmed]   
95. Ahmad R, Srivastava A. Inhibition of glutathione S-transferase from Plasmodium yoelii by protoporphyrin IX, cibacron blue and menadione: Implications and therapeutic benefits. Parasitol Res 2008; 102:805-7. [DOI via Crossref]    [Pubmed]   
96. Turrens JF. Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med 2004; 25:211-20. [DOI via Crossref]    [Pubmed]   
97. Theobald AJ, Caballero I, Coma I, Colmenarejo G, Cid C, Gamo MJ, et al. Discovery and biochemical characterization of Plasmodium thioredoxin reductase inhibitors from an antimalarial set. Biochem 2012; 51:4764-71. [DOI via Crossref]    [Pubmed]   
98. Gallo V, Schwarzer E, Rahlfs S, Schirmer RH, Van Zwieten R, Roos D, et al. Inherited glutathione reductase deficiency and Plasmodium falciparum malaria-a case study. PLoS ONE 2009; 4:e7303.

How to Cite this Article
Pubmed Style

Paul C Chikezie. Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. A J Physiol Biochem Pharmacol. 2015; 4(3): 61-68. doi:10.5455/jib.20151230060340


Web Style

Paul C Chikezie. Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. http://www.ajpbp.com/?mno=208252 [Access: November 18, 2018]. doi:10.5455/jib.20151230060340


AMA (American Medical Association) Style

Paul C Chikezie. Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. A J Physiol Biochem Pharmacol. 2015; 4(3): 61-68. doi:10.5455/jib.20151230060340



Vancouver/ICMJE Style

Paul C Chikezie. Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. A J Physiol Biochem Pharmacol. (2015), [cited November 18, 2018]; 4(3): 61-68. doi:10.5455/jib.20151230060340



Harvard Style

Paul C Chikezie (2015) Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. A J Physiol Biochem Pharmacol, 4 (3), 61-68. doi:10.5455/jib.20151230060340



Turabian Style

Paul C Chikezie. 2015. Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. American Journal of Physiology, Biochemistry and Pharmacology, 4 (3), 61-68. doi:10.5455/jib.20151230060340



Chicago Style

Paul C Chikezie. "Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes." American Journal of Physiology, Biochemistry and Pharmacology 4 (2015), 61-68. doi:10.5455/jib.20151230060340



MLA (The Modern Language Association) Style

Paul C Chikezie. "Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes." American Journal of Physiology, Biochemistry and Pharmacology 4.3 (2015), 61-68. Print. doi:10.5455/jib.20151230060340



APA (American Psychological Association) Style

Paul C Chikezie (2015) Critical Roles of Thiol-Mediated Antioxidant Detoxification Systems in the Pathophysiology of Plasmodium falciparum-Infected Erythrocytes. American Journal of Physiology, Biochemistry and Pharmacology, 4 (3), 61-68. doi:10.5455/jib.20151230060340





Most Viewed Articles
  • Slippery Elm, its Biochemistry, and use as a Complementary and Alternative Treatment for Laryngeal Irritation
    Christopher R Watts, Bernard rousseau
    J Investig Biochem. 2012; 1(1): 17-23
    » Abstract & References » doi: 10.5455/jib.20120417052415

  • Selected disease fundamentals based on the unified cell bioenergetics
    Andrzej Kasperski, Renata Kasperska
    J Investig Biochem. 2013; 2(2): 93-100
    » Abstract & References » doi: 10.5455/jib.20130227041230

  • Prevalence of vitamin B12 deficiency in Helicobacter pylori infected patients in Jordan.
    Saad Abed Aljalil Alfawaeir, Mohammad Basim Abuzaid
    J Investig Biochem. 2013; 2(1): 21-25
    » Abstract & References » doi: 10.5455/jib.20121215061954

  • Serum levels of high-sensitivity C-reactive protein (hs-CRP) in Helicobacter pylori infected patients
    Saad Al-Fawaeir, Mohammad Basim Abu Zaid
    J Investig Biochem. 2013; 2(1): 32-36
    » Abstract & References » doi: 10.5455/jib.20121225015606

  • Molecular Characterization of Alpha and Beta Thalassemia in Yemeni Sickle Cell Disease Children
    Saeed Thabet Nasher, Mohammed Wael Abu Ghoush
    J Investig Biochem. 2013; 2(1): 44-52
    » Abstract & References » doi: 10.5455/jib.20130105022014

  • Hepatoprotective and In vivo Anti-oxidant Activity of Costus afer Leaf Extracts against Acetaminophen-Induced Hepatotoxicity in Rats
    God'swill Nduka Anyasor, Kofoworola O. Odunsanya, Audrey C. Ibeneme
    J Investig Biochem. 2013; 2(1): 53-61
    » Abstract & References » doi: 10.5455/jib.20130301030851

  • Correlation Between Elevated Hepatic Enzymes & High-Sensitivity Crp in Metabolic Syndrome.
    Al-Rubaye Faisal, Shakir Mahmood, Jumah Kadhum
    J Investig Biochem. 2012; 1(1): 6-11
    » Abstract & References » doi: 10.5455/jib.20120528094732

  • Serum Lipid Profile of Breast Cancer Patients in Kashmir
    Showkat Ahmad Bhat, Manzoor R Mir, Sabhiya Majid, Ahmad Arif Reshi, Ishraq Husain, Tehseen Hassan, Hilal Ahmad
    J Investig Biochem. 2013; 2(1): 26-31
    » Abstract & References » doi: 10.5455/jib.20121125075314

  • Alteration of antioxidant enzymes and oxidative stress in elderly patient.
    Seema L. Jawalekar1, Anil K. Bhutey2, Aarti Karnik3, Vasant T. Surve4
    J Investig Biochem. 2013; 2(1): 37-43
    » Abstract & References » doi: 10.5455/jib.20130129093838

  • Potential Role of Oxidized LDL (ox-LDL) and Adhesion Molecules (VCAM-1, ICAM-1) in Type 2 Diabetes Mellitus Patients in Qassim region, KSA
    Manal Basyouni, Maha Ahmed, Hisham Ismail , Iman Esmat
    J Investig Biochem. 2012; 1(1): 48-54
    » Abstract & References » doi: 10.5455/jib.20120417052458

  • Most Downloaded
  • Slippery Elm, its Biochemistry, and use as a Complementary and Alternative Treatment for Laryngeal Irritation
    Christopher R Watts, Bernard rousseau
    J Investig Biochem. 2012; 1(1): 17-23
    » Abstract & References » doi: 10.5455/jib.20120417052415

  • Selected disease fundamentals based on the unified cell bioenergetics
    Andrzej Kasperski, Renata Kasperska
    J Investig Biochem. 2013; 2(2): 93-100
    » Abstract & References » doi: 10.5455/jib.20130227041230

  • Serum levels of high-sensitivity C-reactive protein (hs-CRP) in Helicobacter pylori infected patients
    Saad Al-Fawaeir, Mohammad Basim Abu Zaid
    J Investig Biochem. 2013; 2(1): 32-36
    » Abstract & References » doi: 10.5455/jib.20121225015606

  • Alteration of antioxidant enzymes and oxidative stress in elderly patient.
    Seema L. Jawalekar1, Anil K. Bhutey2, Aarti Karnik3, Vasant T. Surve4
    J Investig Biochem. 2013; 2(1): 37-43
    » Abstract & References » doi: 10.5455/jib.20130129093838

  • Serum Lipid Profile of Breast Cancer Patients in Kashmir
    Showkat Ahmad Bhat, Manzoor R Mir, Sabhiya Majid, Ahmad Arif Reshi, Ishraq Husain, Tehseen Hassan, Hilal Ahmad
    J Investig Biochem. 2013; 2(1): 26-31
    » Abstract & References » doi: 10.5455/jib.20121125075314

  • Hepatoprotective and In vivo Anti-oxidant Activity of Costus afer Leaf Extracts against Acetaminophen-Induced Hepatotoxicity in Rats
    God'swill Nduka Anyasor, Kofoworola O. Odunsanya, Audrey C. Ibeneme
    J Investig Biochem. 2013; 2(1): 53-61
    » Abstract & References » doi: 10.5455/jib.20130301030851

  • Evaluation of glycated albumin and microalbuminuria as early risk markers of nephropathy in type 2 diabetes mellitus
    Suresh Babu Kondaveeti, Ivvala Anand Shaker
    J Investig Biochem. 2013; 2(2): 127-131
    » Abstract & References » doi: 10.5455/jib.20130507061739

  • Comparative study of ischemia modified albumin and nitric oxide in hyperthyroidism
    Monica Verma1, Kiran Dahiya1, Veena Singh Ghalaut1, Abhishek Soni2, Jagjeet Singh3, Vasudha Dhupper1
    J Investig Biochem. 2014; 3(1): 17-20
    » Abstract & References » doi: 10.5455/jib.20130707090209

  • Prevalence of vitamin B12 deficiency in Helicobacter pylori infected patients in Jordan.
    Saad Abed Aljalil Alfawaeir, Mohammad Basim Abuzaid
    J Investig Biochem. 2013; 2(1): 21-25
    » Abstract & References » doi: 10.5455/jib.20121215061954

  • Serum lipid profile in Helicobacter pylori infected patients
    Saad Al-Fawaeir, Mohammad Abu Zaid, Ayman Abu Awad, Baker Alabedallat
    J Investig Biochem. 2013; 2(2): 132-135
    » Abstract & References » doi: 10.5455/jib.20130603084538

  • Most Cited Articles
  • Biochemical study on the impact of Nigella sativa and virgin olive oils on cadmium-induced nephrotoxicity and neurotoxicity in rats
    Eman Taha Mohammed, Khalid Shaban Hashem, Mahmoud Ramadan Abdel Rheim
    J Investig Biochem. 2014; 3(2): 71-78
    » Abstract & References » doi: 10.5455/jib.20140716041908
    Cited : 6 times [Click to see citing articles]

  • Study and Characterization of the Antioxidant Activity of the Inclusion Complex of Apigenin with β-Cyclodextrin and HP-β-Cyclodextrin in solution
    Jinxia Li
    J Investig Biochem. 2014; 3(3): 107-111
    » Abstract & References » doi: 10.5455/jib.20140905032504
    Cited : 5 times [Click to see citing articles]

  • Slippery Elm, its Biochemistry, and use as a Complementary and Alternative Treatment for Laryngeal Irritation
    Christopher R Watts, Bernard rousseau
    J Investig Biochem. 2012; 1(1): 17-23
    » Abstract & References » doi: 10.5455/jib.20120417052415
    Cited : 4 times [Click to see citing articles]

  • Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats
    Magda A. Megahed1, Kamel M. A. Hassanin2, Ibrahim M. I. Youssef3, Abdul Baset A. Elfghi4, Kamal A. Amin2
    J Investig Biochem. 2014; 3(1): 21-25
    » Abstract & References » doi: 10.5455/jib.20130716075753
    Cited : 4 times [Click to see citing articles]

  • Quercetin, a natural phytochemical and antioxidant protects against sodium azide-induced hepatic and splenic oxidative stress in rats
    Oluwatobi Temitope Somade, Oluseyi Adeboye Akinloye, Michael Oluwayemi Adeyeye, Gbenga Daniel Fabunmi, Olakunle Opeoluwa Idowu, Funmilayo Oluwaseun Badmus, Barakat Oluwatoyin Salaudeen
    J Investig Biochem. 2015; 4(3): 69-74
    » Abstract & References » doi: 10.5455/jib.20151220014400
    Cited : 3 times [Click to see citing articles]

  • A New Marker For The Diagnosýs Of Sepsis: Presepsin
    Mehmet Agilli, Irfan Sener, Fatih Yesildal, Tevfik Honca, Ibrahim Aydin, Emin Ozgur Akgul, Halil Yaman
    J Investig Biochem. 2012; 1(1): 55-57
    » Abstract & References » doi: 10.5455/jib.20120521073837
    Cited : 3 times [Click to see citing articles]

  • The role of urinary 5- hydroxyindoleacetic acid determination in diagnosis of acute appendicitis
    Hamid Hindi Sarhan, Aseel Fawzi Hatroosh, Amina Hamed Alobaidi
    J Investig Biochem. 2013; 2(1): 1-5
    » Abstract & References » doi: 10.5455/jib.20121026084836
    Cited : 3 times [Click to see citing articles]

  • Serum Lipid Profile of Breast Cancer Patients in Kashmir
    Showkat Ahmad Bhat, Manzoor R Mir, Sabhiya Majid, Ahmad Arif Reshi, Ishraq Husain, Tehseen Hassan, Hilal Ahmad
    J Investig Biochem. 2013; 2(1): 26-31
    » Abstract & References » doi: 10.5455/jib.20121125075314
    Cited : 3 times [Click to see citing articles]

  • Phytochemical content of Cnidoscolus aconitifolius leaves and toxicological effect of its aqueous leaf extract in Wistar rats
    Doris Akachukwu, Polycarp Nnacheta Okafor, Chiedozie O Ibegbulem
    J Investig Biochem. 2014; 3(1): 26-31
    » Abstract & References » doi: 10.5455/jib.20140504023102
    Cited : 3 times [Click to see citing articles]

  • Myeloperoxidase, Malondialdehyde and serum Lipids in type 2 diabetes mellitus
    Mohamedi Begum, Ashok Kumar J., Hilda Priya D'Souza, Sushith Sushith, Prathima M.B, Reshma S., Shashikala M.D, Manjula Anil, Suriyan S Nair, Kavitha Ashok Kumar
    J Investig Biochem. 2015; 4(1): 13-17
    » Abstract & References » doi: 10.5455/jib.20150331115356
    Cited : 3 times [Click to see citing articles]